Self-Learning ULR Fuzzy Controllers Using Temporal Back Propagation
نویسندگان
چکیده
منابع مشابه
Self-learning fuzzy controllers based on temporal backpropagation
A generalized control strategy that enhances fuzzy controllers with self-learning capability for achieving prescribed control objectives in a near-optimal manner is presented. This methodology, termed temporal backpropagation, is model-sensitive in the sense that it can deal with plants that can be represented in a piecewise-differentiable format, such as difference equations, neural networks, ...
متن کاملLearning sets of filters using back-propagation
A learning procedure, called back-propagation, for layered networks of deterministic, neuron-like units has been described previously. The ability of the procedure automatically to discover useful internal representations makes it a powerful tool for attacking difficult problems like speech recognition. This paper describes further research on the learning procedure and presents an example in w...
متن کاملThree-Term Fuzzy Back-Propagation
The disadvantages of the fuzzy BP learning are its low speed of error convergence and the high possibility of trapping into local minima. In this paper, a fuzzy proportional factor is added to the fuzzy BP’s iteration scheme to enhance the convergence speed. The added factor makes the proposed method more dependant on the distance of actual outputs and desired ones. Thus in contrast with the co...
متن کاملSelf-learning fuzzy logic controllers for pursuit-evasion differential games
This paper addresses the problem of tuning the input and the output parameters of a fuzzy logic controller. The system learns autonomously without supervision or a priori training data. Two novel techniques are proposed. The first technique combines Q(λ)-learning with function approximation (fuzzy inference system) to tune the parameters of a fuzzy logic controller operating in continuous state...
متن کاملA two-stage approach to self-learning direct fuzzy controllers
In this paper, a novel approach is presented to fine tune a direct fuzzy controller based on very limited information on the nonlinear plant to be controlled. Without any off-line pretraining, the algorithm achieves very high control performance through a two-stage algorithm. In the first stage, coarse tuning of the fuzzy rules (both rule consequents and membership functions of the premises) is...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEJ Transactions on Electronics, Information and Systems
سال: 1997
ISSN: 0385-4221,1348-8155
DOI: 10.1541/ieejeiss1987.117.12_1794